skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Junhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that the Berry force as computed by an approximate, mean-field electronic structure can be meaningful if properly interpreted. In particular, for a model Hamiltonian representing a molecular system with an even number of electrons interacting via a two-body (Hubbard) interaction and a spin–orbit coupling, we show that a meaningful nonzero Berry force emerges whenever there is spin unrestriction—even though the Hamiltonian is real-valued and formally the on-diagonal single-surface Berry force must be zero. Moreover, if properly applied, this mean-field Berry force yields roughly the correct asymptotic motion for scattering through an avoided crossing. That being said, within the context of a ground-state calculation, several nuances do arise as far interpreting the Berry force correctly, and as a practical matter, the Berry force diverges near the Coulson–Fischer point (which can lead to numerical instabilities). We do not address magnetic fields here. 
    more » « less